The Effect of Lower Extremity Dysfunction on pelvic pain and incontinence

Susan C. Clinton, PT, DScPT, OCS, WCS, COMT, FAAOMPT
Embody Physiotherapy & Wellness, LLC
University of Pittsburgh
Chatham University
Sewickley, PA

Catherine H. Vargo, PT, DPT, OCS
UPMC Centers for Rehab Services
Pittsburgh, PA

Jessica Bayer, PT, DPT, WCS, CLT-LANA
Physiotherapy Associates
Dover, DE

LQ Dysfunction and the Pelvic Floor

• Consider
 – Pelvic floor dysfunction as a secondary or tertiary response to adaptations to movement dysfunctions from the lower quarter
 • Foot
 • Ankle
 • Knee
 • Hip
 • Lumbar spine

LQ Dysfunction and the Pelvic Floor

• Biomechanical changes can lead to:
 – Decreased shock attenuation
 – Change in gait pattern
 – Change in load transfer through the pelvis
 – Change in neurology
 – Changes in breathing patterns
 – Change in mm activation
 • Inhibition
 • Compensatory activation
 • Dyscoordination of proximal postural mm
 – Conversion to chronic postural adaptations

LE Dysfunction

• Foot
 • Altered gait
 • Spinning of first ray medially to accommodate for adduction of first phalange
 • Functional pes planus or cavus each has a high correlation of more proximal injury (Kaufmann et al 1999)

Foot

• Common Dysfunctions
 – Hallux Rigidus
 • Forces altered gait to accommodate stiff first joint (Nawoczenski 1999)
 – Roll through on lateral surfaces of MTP to offload
 – Less DF, displaced centers of rotation, and early jamming of the articular surfaces
 – Increased pressures on plantar surface especially during toe off due to increased lever arm caused by joint stiffness
 • Decreased push off
 – Decreased push off increases anterior hip forces (Lewis and Ferris 2008)
Ankle

- Common dysfunctions
 - Inversion ankle sprains
 - Lack of talar reposition (Denegar et al 2002)
 - Talus in a more anteriorly stuck position
 - Creates a abnormal axis of motion
 - Likely contributes to further joint dysfunction
 - Landing styles especially in decreased DF situations lead to large knee valgus excursion during landing (Sigward et al 2008)
 - Ankle DF loss leads to higher risk of ACL tear (Fong et al 2011)

- Achilles Tendonitis
 - Maintenance of ankle in mild PF not allowing full DF
 - Decreased ability for push off
 - Faulty biomechanics leading to achilles tendon overuse injuries
 - 58% of all achilles tendonitis cases can be linked back to bad biomechanics of the foot (Kaufmann et al 1999)
 - Lack of eccentric control
 - Importance of ecc. plantar flexors in gait
 - Chronic high heels (non wedge)
 - Shortened gastrosoleus
 - Decreased excursion of ankle joint during all phases of gait

Knee

- Common Dysfunction
 - Limited ROM
 - Lack of full knee extension frequently seen in OA
 - Not allowing for proper loading response
 - Overflexed knee leading to bent knee gait
 - Less force distribution combined with overworking quad leads to a stiff joint thereby increasing force distribution needs of surrounding joints also likely progressing OA at the knee (Child et al 2004)

- Mismatched Dynamic Response
 - Lack of hip abductor and glute strength leading to patella femoral pain usually associated with tight ITB (Ireland et al 2003).
 - Hip adduction and femoral IR caused by weakness contributing to increased knee valgus with gait

Hip

- Common Dysfunction
 - Lack of ROM
 - Hip extension ROM loss leading to anterior hip labral fraying
 - thrust of femoral head into anterior rim of acetabulum due to decreased available posterior excursion
 - Patient may compensate by maintaining a mild anterior tilt of pelvis contributing to chronic LBP

- Lack of Strength
 - Lack of External Rotation, Abductor strength found to be a high predictor of LE injury in athletes (Leetun et al 2004)
 - Weak hip extensors may not control femoral head eccentrically allowing anterior translation and possible anterior labral tear (Lewis et al 2007)
 - Increased ankle push off may be able to decrease hip strength requirement during gait (Lewis and Ferris 2008)
Nerve root compression

- Differences between nerve root susceptibility to compression vs. peripheral nn

Lumbar Spine

- Spinal Nerve Root Compression and partial denervation
 - Neurotomesis
 - Axonotemesis
 - Recovery rate
 - Clinical presentation
 - Fatiguable weakness

(Bohannon and Gajdosik, 1987)

Lumbar Spine

- L5/S1
 - Key muscles
 - Secondary muscles
 - Sensory
 - Reflex

- L4/L5
 - Key muscles
 - Secondary muscles
 - Sensory
 - Reflex

Lumbar Spine

- Functional changes with SNRC
 - Postural adaptations/muscle and biomechanics
 - The role of the psoas
 - The role of the gluteus medius/minimus
 - The role of the gluteus maximus
 - The role of the multifidus
 - The role of the TFL
 - The role of the adductor
 - The role of the hip rotators

Pelvic Floor Fatigability

- Changes in evidence regarding strength training and functional performance of the pelvic floor
 - Anal Sphincter Fatigue (Hodges et al)
 - PFM submax training (Junginer et al, 2013)
 - PF fatigue after strenuous exercise (Ree et al, 2007)
 - Max strength training vs. sub max?
Pelvic Floor Fatigability

- Submaximal and eccentric training of postural and pelvic floor muscles in functional context with the lower quarter

Functional Considerations

- Runners
- Tri-athletes
- Dancers
- Age related changes
- Other activities

Case Presentations

References

References

References

Women’s Health Issues Manual Therapy Seminars

Our 3-4 day lab-intensive seminars are offered worldwide. The material is immediately applicable in any clinical setting as it bridges the needs of various patients.

Visceral Manipulation Can Benefit:
- Pelvic Region Pain
- Bowel Dysfunction
- Incontinence
- Fibroids and Cysts
- Dysmenorrhea
- Infertility Issues of Mechanical Origin
- Prenatal and Postpartum Musculoskeletal Pain
- Endometriosis

Gail Wetzler
PT, DPT, EDO, BI-D
Curriculum Director

“As a Physical Therapist and Director of Curriculum of the Barral Institute, I invite you to experience the value of visceral mobilization as it relates to specific results for your patients.”

Registration and complete schedule:
866-522-7725 or Barralinstitute.com
Pathway® CTS 2000 and CTS 1500 Pelvic Muscle Rehabilitation Systems

- Simultaneous EMG and Pressure Manometry
- Concurrent EMG and Stimulation
- Matrixed Audio Feedback
- Patient Progress Tracking

QuickScan™ Bladder Ultrasound

- Touchscreen Tablet
- Post Void Residual
- Bladder Volume

Scan here to learn what our Products can do for you.

Contact us today for more information or to schedule a demonstration
info@theprogrp.com | www.theprogrp.com | 1-800-442-2325

See You at CSM Booth #1422